Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens

نویسندگان

  • Henry M. Wood
  • Ornella Belvedere
  • Caroline Conway
  • Catherine Daly
  • Rebecca Chalkley
  • Melissa Bickerdike
  • Claire McKinley
  • Phil Egan
  • Lisa Ross
  • Bruce Hayward
  • Joanne Morgan
  • Leslie Davidson
  • Ken MacLennan
  • Thian K. Ong
  • Kostas Papagiannopoulos
  • Ian Cook
  • David J. Adams
  • Graham R. Taylor
  • Pamela Rabbitts
چکیده

The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq

Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from ...

متن کامل

Targeted resequencing of candidate genes using selector probes

Targeted genome enrichment is a powerful tool for making use of the massive throughput of novel DNA-sequencing instruments. We herein present a simple and scalable protocol for multiplex amplification of target regions based on the Selector technique. The updated version exhibits improved coverage and compatibility with next-generation-sequencing (NGS) library-construction procedures for shotgu...

متن کامل

Targeted High Depth Next Generation Sequencing of Tumor Specimens

We have developed a targeted next generation sequencing (NGS) methodology for sensitive DNA variant detection that is highly optimized for clinical specimens and enables the accurate detection of clinically actionable mutations from low input DNA quantities. This strategy provides reliable, uniform, and high depth (>1000x) sequencing across gene regions representing >500 known cancerassociated ...

متن کامل

Targeted High Depth Next Generation Sequencing of Tumor Specimens

We have developed a targeted next generation sequencing (NGS) methodology for sensitive DNA variant detection that is highly optimized for clinical specimens and enables the accurate detection of clinically actionable mutations from low input DNA quantities. This strategy provides reliable, uniform, and high depth (>1000x) sequencing across gene regions representing >500 known cancerassociated ...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010